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Abstract. The core problem of Magnetic Resonance Imaging (MRI)
is the trade off between acceleration and image quality. Image recon-
struction and super-resolution are two crucial techniques in Magnetic
Resonance Imaging (MRI). Current methods are designed to perform
these tasks separately, ignoring the correlations between them. In this
work, we propose an end-to-end task transformer network (T2Net) for
joint MRI reconstruction and super-resolution, which allows represen-
tations and feature transmission to be shared between multiple task
to achieve higher-quality, super-resolved and motion-artifacts-free im-
ages from highly undersampled and degenerated MRI data. Our frame-
work combines both reconstruction and super-resolution, divided into
two sub-branches, whose features are expressed as queries and keys.
Specifically, we encourage joint feature learning between the two tasks,
thereby transferring accurate task information. We first use two separate
CNN branches to extract task-specific features. Then, a task transformer
module is designed to embed and synthesize the relevance between the
two tasks. Experimental results show that our multi-task model signif-
icantly outperforms advanced sequential methods, both quantitatively
and qualitatively.

Keywords: Multi-task learning · MRI reconstruction · Super-resolution.

1 Introduction

Magnetic resonance imaging (MRI) is a popular diagnostic modality. However,
the physics behind its data acquisition process makes it inherently slower than
other methods such as computed tomography (CT) or X-rays. Therefore, im-
proving the acquisition speed of MRI has been an important research goal for
decades. MRI reconstruction and super-resolution (SR) are two main methods
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for this, where the former accelerates MRI by reducing the k-space sampling
rate, and the latter achieves a high-resolution (HR) image by restoring a single
degenerated low-resolution (LR) image [6].

Outstanding contributions have been made in both areas [5,9,7]. Specifi-
cally, compressed sensing (CS) [13], low-rank [25], dictionary learning [23,30],
and manifold fitting [20] techniques utilize various priors to overcome alias-
ing artifacts caused by the violation of the Shannon-Nyquist sampling theorem
for MRI reconstruction. With the renaissance of deep neural networks, differ-
ent convolutional neural network (CNN) approaches have also been developed
for fast MRI reconstruction [33,8]. Typical examples include model-based un-
rolling methods, e.g., VN-Net [10], which generalizes the CS formulation to a
variational model, and ADMM-Net, which is derived from the iterative proce-
dures [29]; end-to-end learning methods, e.g., using U-Net as the basic framework
to solve the problem of MRI reconstruction [22,11]; and generative adversarial
networks (GANs) [28,19]. In addition to various network structures, series of
convolutions based on the characteristics of MRI data have also been designed
to solve the problem of MRI reconstruction [8,26]. For MRI SR, iterative algo-
rithms (e.g., low rank or sparse representation) take image priors into account
as regularization items and try to obtain a higher-quality image from a single
LR image [27,32]. Similarly, CNN approaches have achieved state-of-the-art per-
formance in SR [2,17]. For example, residual learning can be used to extract
multi-scale information and obtain higher-quality images [24,21]. GAN-based
methods have also been used to recover HR details from an LR input [3,18].

However, these works are designed to perform one specific function, i.e., train
a single model to carry out the desired task. While acceptable performance can
be achieved in this way, information that might help the model perform better
in certain metrics is often ignored, since too much focus is given to one single
task. In the real world, a network that can perform multiple tasks simultane-
ously is far preferable to a set of independent networks, as it can provide a more
complete visual system. Since related tasks often share features, real-world tasks
tend to have strong dependencies. Recently, multi-task learning has been success-
fully applied to various fields, including natural language processing [4], speech
recognition [12] and computer vision [15]. By sharing representations between
related tasks, the model can better generalize to the original task. Compared
with standard single-task learning, multi-task models can express both shared
and task-specific characteristics. In natural images, multi-task learning has been
widely used for image enhancement [1,31]. However, current models directly
incorporate different tasks into the network in a sequential manner, without
exploring the features shared across the tasks.

Inspired by the powerful visual capabilities of transformer and multi-task
learning, we propose an end-to-end task transformer network, named T2Net,
for multi-task learning, which integrates both MRI reconstruction and SR. Our
contributions are three-fold: First, to the best of our knowledge, we are the first
to introduce the transformer framework into multi-task learning for MRI recon-
struction and SR. Our network allows representations to be shared between the
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two tasks, leveraging knowledge from one task to speed up the learning pro-
cess in the other and increase the flexibility for sharing complementary features.
Second, we develop a framework with two branches for expressing task-specific
features and a task transformer module for transferring shared features. More
specifically, the task transformer module includes relevance embedding, transfer
attention and soft attention, which enable related tasks to share visual features.
Third, we demonstrate that our multi-task model generates superior results
compared to various sequential combinations of state-of-the-art MRI reconstruc-
tion and super-resolution models.

2 Method

2.1 Task Transformer Network

Let y be the complex-valued, fully sampled k-space. The corresponding fully
sampled HR image with a size of h× w can be obtained by x = F−1(y), where
F−1 is the inverse 2D fast Fourier transform (FFT). To accelerate the MRI
acquisition, a binary mask operator M defining the Cartesian acquisition trajec-
tory is used to select a subset of the k-space points. Therefore, the undersampled
k-space is obtained by ŷ = M � y, where � denotes element-wise multiplica-
tion. Accordingly, the zero-filled image can be expressed as x̂ = F−1(ŷ). In MRI
super-resolution, to obtain the LR image xLR with a size of h

s ×
w
s (s is the

scale factor), we follow [3], first downgrading the resolution by truncating the
outer part of y with a desired factor to obtain yLR, and then applying F to
it. Therefore, if we apply downgrading to x̂, we will obtain the undersampled,
degenerated MRI data for our multi-task input x̂LR.

To effectively achieve higher-quality, motion-artifact-free images from highly
undersampled and degenerated MRI data x̂LR, we propose a simple and ef-
fective end-to-end framework, named the Task Transformer Network (T2Net).
As shown in Fig. 1, our multi-task framework consists of three parts: an SR
branch, a reconstruction (Rec) branch and a task transformer module. The first
two branches are used to extract task-specific features, providing our network
the ability to learn features tailored to each task. The task transformer mod-
ule is then used to learn shared features, encouraging the network to learn a
generalizable representation. As can be seen, the input of the two branches is
the undersampled, degenerated MRI data x̂LR, which contains motion artifacts
and blurring effects. The output of the Rec branch is the LR motion-free image
x′LR, while the output of the SR branch is our final desired high-quality, super-
resolved and motion-free image x′. Our framework can be approximated using
neural networks by minimizing an `1 loss function:

θ̂ = arg min
θ1,θ2

N∑
j

(
α
∥∥∥xj − fSRcnn (x̂jLR | θ1)∥∥∥

1
+ β

∥∥∥xjLR − fReccnn

(
x̂jLR | θ2

)∥∥∥
1

)
, (1)

where fSR
cnn and fRec

cnn represent the mapping functions of the SR and Rec branches
with parameters θ1 and θ2, respectively, and α and β are used to balance the
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Fig. 1. Overview of the proposed multi-task framework, including an SR branch, a
reconstruction (Rec) branch, and a task transformer module.

weights of the two branches. Note that with sufficient training data {xj , x̂j
LR}

and the SGD algorithm, we can obtain well-trained weights θ̂.

SR Branch. Our SR branch is used to enlarge the image from an undersampled
and degenerated input x̂LR. As shown in Fig. 1, for an input image of size h

s×
w
s

with artifacts, a convolutional layer is used to extract the shallow feature F 0
SR of

the SR branch. Then we send it to the backbone of EDSR [14] to extract the SR
features: F 1

SR = HRB
SR1

(
F 0
SR

)
, where HRB

SR1
represents the first Resblock in the SR

branch. To enhance features from different tasks, we propose a task transformer
module Htt (§2.2), which transfers the motion-artifacts-free representation to
the SR branch. Formally, we have

F i
TT = Htt

i

(
F i
SR + F i

Rec

)
, i = 1, 2, . . . , N, (2)

where N is the number of Htt, F i
Rec is the feature from the Rec branch (see

Eq. (4)), and F i
SR represents the i-th feature of the SR branch. The learned

motion-artifacts-free representation F i
TT is then sent to the following Resblock:

F i+1
SR = HRB

SRi+1

(
F i
TT

)
. (3)

Finally, a sub-pixel convolution U↑ is used as the upsampling module to generate
the output x′ of scale h×w: x′ = U↑

(
FN
SR + F 0

SR

)
. The whole branch is trained

under the supervision of the fully sampled HR image x.

Reconstruction Branch. As discussed above, only relying on the SR module is
not sufficient for recovering a high-resolution and motion-corrected image when
starting from an LR image with artifacts as input. Reconstruction, on the other
hand, can restore a clear image with correct anatomical structure from an input
with motion artifacts x̂LR, because it is trained under the supervision of xLR.
This means that reconstruction can effectively remove the artifacts introduced
by the undersampled k-space, which is helpful for our final multi-task goal. By
comparing the input and output of the Rec branch in Fig. 1, we can easily see
that the Rec branch is more powerful in eliminating artifacts. For this branch,
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Fig. 2. Architecture of the proposed task transformer module. Q and K are the features
inherited from the SR and Rec branches, respectively. V is the feature from the Rec
branch with sequential upsampling and downsampling applied to it.

as shown in Fig. 1, we employ the same design as the SR branch to reduce the
computational cost and generate high-quality results. We first use a convolutional
layer to extract the shallow feature F 0

Rec from the Rec branch. Then a series of
HRB

Reci
is used to extract the deep motion-corrected features

F i
Rec = HRB

Reci

(
F i−1
Rec

)
, i = 1, 2, . . . , N, (4)

where HRB
Reci

represents the i-th Resblocks, and F i
Rec represents the i-th feature

of the Rec branch. The Rec branch is trained under the supervision of the LR
motion-artifacts-free image xLR, aiming to remove the artifacts from the input.
In our multi-task framework, the output of this branch is fused to the SR branch
to obtain the final super-resolved, motion-artifact-free image.

2.2 Task Transformer Module

Since the Rec branch contains a stronger artifact removal capacity than the
SR branch, we introduce a task transformer module to guide the SR branch
to learn SR motion-artifacts-free representation from the Rec branch. Our task
transformer module consists of three parts: a relevance embedding, a transfer
attention for feature transfer and a soft attention for feature synthesis. As shown
in Fig.2, the features F i

SR and F i
Rec inherited from the SR and Rec branches are

expressed as the query (Q) and key (K). The value (V ) is the feature F i
Rec ↑↓

obtained by sequentially applying upsampling ↑ and downsampling ↓ on F i
Rec to

make it domain-consistent with Q.

Relevance Embedding. Relevance embedding aims to embed the relevance
information from the Rec branch by estimating the similarity between Q and K.
To calculate the relevance ri,j between these two branches, we have

ri,j =

〈
qi
‖qi‖

,
kj
‖kj‖

〉
, (5)

where qi
(
i ∈
[
1, hs×

w
s

])
and kj

(
j ∈

[
1, hs×

w
s

])
are the patches of Q and K,

respectively.
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Transfer Attention. Our transfer attention module aims to transfer anatomi-
cal structure features from the Rec branch to the SR branch. Different from the
traditional attention mechanism, we do not take a weighted sum of the recon-
struction features for each query qi, because this would result in blurred images
for image restoration. To transfer features from the most relevant positions in
the Rec branch for each qi, we obtain a transfer attention map T from the rele-
vance ri,j : ti = arg maxj(ri,j), where ti

(
i ∈
[
1, h2×

w
2

])
is the i-th element in T .

We use the value of ti to represent the position in the Rec branch most relevant
to the i-th position in the SR branch.

To obtain the anatomical structure features C without artifacts transferred
from the Rec branch, an index selection operation is applied to the unfolded
patches of V using ti as the index: ci = vti , where ci represents the value of C
in the i-th position, which is equal to the ti-th position of V .

Soft Attention. To synthesize the features from the two branches in our model,
we first concatenate Q and C, and send them to a convolutional layer Z =
Convz(Concat(C,Q)). Then, we use a soft attention module to aggregate the
synthetic features Z and Q. To enhance the transferred anatomical structure
information, we compute the soft attention map S from ri,j to represent the
confidence of the transferred structure features for each position in C: si =
maxj(ri,j), where si is the i-th position of the soft attention map S. To leverage
more information from the SR branch, we first combine the synthetic feature Z
with the original feature of the SR branch Q. Then, the final output of the task
transformer module is obtained as follows:

FTT = Q
⊕

Convout(Z)
⊗
S, (6)

where
⊕

denotes the element-wise summation,
⊗

denotes the element-wise mul-
tiplication, and FTT represents the final output of the task transformer module,
which will be sent to the SR branch to restore a higher-quality, SR and motion-
artifact-free image.

3 Experiments

Datasets. We employ the public IXI dataset and a clinical brain MRI dataset to
evaluate our method. The clinical dataset is scanned with fully sampling using
a clinical 3T Siemens Magnetom Skyra system on 155 patients. The imaging
protocol is as follows: matrix size 320×320×20, TR = 4511 ms, TE = 112.86 ms,
field of view (FOV) = 230×200 mm2, turbo factor/echo train length TF = 16.
For the IXI dataset, we exclude the first few slices of each volume since the frontal
slices are much noisier than the others, making their distribution different. More
details on the IXI dataset can be obtained from http://brain-development.

org/ixi-dataset/. We split each dataset patient-wise into a ratio of 7:1:2 for
training/validation/testing.

http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
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Table 1. Quantitative results on the two datasets under different enlargement scales.

Dataset IXI dataset clinical dataset

Scale 2× 4× 2× 4×
PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE

Com-A 27.541 0.801 0.041 21.111 0.705 0.178 27.031 0.764 0.065 26.169 0.742 0.079

Com-B 28.439 0.847 0.033 21.323 0.687 0.170 28.750 0.816 0.044 27.539 0.803 0.058

Com-C 27.535 0.802 0.041 21.696 0.731 0.156 28.781 0.765 0.064 26.197 0.751 0.079

Com-D 28.426 0.847 0.033 21.895 0.710 0.149 28.839 0.817 0.043 27.700 0.815 0.056

w/o Rec 28.400 0.809 0.035 25.952 0.789 0.091 28.932 0.802 0.045 28.601 0.819 0.044

w/o Htt 28.700 0.856 0.031 26.692 0.7730 0.089 29.510 0.817 0.037 29.528 0.821 0.037

T2Net 29.397 0.872 0.027 28.659 0.850 0.032 30.400 0.841 0.030 30.252 0.840 0.031

Experimental Setup. For fair comparison, we implement four methods (two
MRI reconstruction methods, ADMMNet [29] and MICCAN [11], and two MRI
SR methods, MGLRL [24] and Lyu et al. [16]) with various sequential com-
binations, which we consider as baselines. These include: Com-A: ADMMNet-
MGLRL, Com-B: ADMMNet-Lyu et al., Com-C: MICCAN-MGLRL, and Com-
D: MICCAN-Lyu et al.. The first model in each combination is used to remove
artifacts, while the second is used to obtain higher-quality images. We imple-
ment our model in PyTorch using Adam with an initial learning rate of 5e-5, and
train it on two NVIDIA Tesla V100 GPUs with 32GB of memory per card, for
50 epochs. Parameters α and β are empirically set to 0.2 and 0.8, respectively.
We use N = 8 residual groups in our network. All the compared methods are
retrained using their default parameter settings.

Experimental Results. We evaluate our multi-task model under 6× Cartesian
acceleration with 2× and 4× enlargement, respectively. In Table 1, we report
the average PSNR, SSIM and NMSE scores with respect to the baselines on the
two datasets, where w/o Rec and w/o Htt will discussed in the ablation study.
On the IXI dataset, our T2Net achieves a PSNR of up to 29.397 dB under 2×
enlargement. Further, compared to the best sequential combination, we improve
the PSNR from 21.895 to 28.659 dB under 4× enlargement. Moreover, with
higher enlargement, the sequential combinations obtain worse scores, while our
T2Net still preserves excellent results. On the clinical dataset, our T2Net again
achieves significantly better results than all combinations, under both enlarge-
ment scales. This suggests that our model can effectively transfer anatomical
structure features to the SR branch, and that this is beneficial to multi-task
learning.

We provide visual comparison results with corresponding error maps in Fig-
ure 3. The first two rows show the restored images and error maps from the IXI
dataset with 6× Cartesian acceleration and 2× enlargement, while the last two
rows are the results for the clinical dataset with 6× Cartesian acceleration and
4× enlargement. As we can see, the input has significant aliasing artifacts and
loss of anatomical details. The sequential combination methods can improve the
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Fig. 3. Visual comparison with error maps of different methods on the two datasets.

image quality, but are less effective than our multi-task methods. Our methods
are obviously robust to aliasing artifacts and structural loss in the input. More
importantly, at a high enlargement scale, our multi-task methods achieve much
better results than the sequential combination methods.

Ablation Study. We evaluate the effectiveness of the two branches and the
task transformer module in our multi-task network. Without loss of generality,
the restoration results of two key components, including the Rec branch and
task transformer module, are evaluated under 6× acceleration and 2× as well as
4× enlargement. We summarize the component analysis in Table 1, where w/o
Rec indicates that only the SR branch is employed, while w/o Htt indicates that
both branches are used but the task transformer module Htt is removed. As we
can observe, w/o Rec obtains the worst results, which indicates the importance
of both branches in our method, as each contains task-specific features for the
target image restoration. Moreover, we can also see that w/o Htt outperforms
w/o Rec, demonstrating that transferring anatomical structure features to the
target SR branch is necessary to achieve complementary representations. More
importantly, our full T2Net further improves the results on both datasets and all
settings. This demonstrates the powerful capability of our Htt and two-branch
structure in multi-task learning, which increases the model’s flexibility to share
complementary features for the restoration of higher-quality, super-resolved, and
motion-artifacts-free images from highly undersampled and degenerated MRI
data.
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4 Conclusion

In this work, we focus on the multi-task learning of MRI reconstruction and
super-resolution. For this purpose, we propose a novel end-to-end task trans-
former network (T2Net) to transfer shared structure information to the task-
specific branch for higher-quality and super-resolved reconstructions. Specifi-
cally, our model consists of two task-specific branches, i.e., a target branch for
SR and auxiliary branch for reconstruction, together with a task transformer
module to transfer anatomical structure information to the target branch. The
proposed task transformer consists of a feature embedding, hard attention and
soft attention to transfer and synthesize the final reconstructions with correct
anatomical structure, whilst maintaining fine details and producing less blurring
and artifacts. In the future, we will design a network to automatically learn the
loss weights.
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